Inapproximability of the Edge-contraction Problem*

Hideaki Otsuki† and Tomio Hirata††, Members

SUMMARY For a property \(\pi \) on graphs, the edge-contraction problem with respect to \(\pi \) is defined as a problem of finding a set of edges of minimum cardinality whose contraction results in a graph satisfying the property \(\pi \). This paper gives a lower bound for the approximation ratio for the problem for any property \(\pi \) that is hereditary on contractions and determined by biconnected components.

Key words: edge-contraction problem, NP-hard, approximation algorithm, approximability, connected vertex cover problem

1. Introduction

The vertex-deletion and edge-deletion problems are natural graph modification problems. The vertex (edge) deletion problem is defined as a problem of finding a set of vertices (edges) of minimum cardinality whose deletion results in a graph satisfying the class of graph property \(\pi \). For these problems, NP-completeness and approximation hardness have been studied [4], [5].

The edge-contraction problem is also a natural graph modification problem, but, to the authors’ knowledge, its approximation hardness is not known. For a property \(\pi \), the edge-contraction problem (EC) with respect to \(\pi \) is defined as that of finding a set of edges of minimum cardinality whose contraction results in a graph satisfying the property \(\pi \). If \(\pi \) is hereditary on contractions and determined by biconnected components, the corresponding EC is NP-complete [1]. In [1], Asano and Hirata showed the NP-completeness of EC using a reduction from the connected vertex cover problem (CVC). The vertex cover problem is complete \([1] \). In \([1]\), Asano and Hirata showed the NP-completeness of EC using a reduction from the connected vertex cover problem (CVC). The vertex cover problem is hard to approximate within a ratio 7/6 [3], and it is easy to see that CVC has the same inapproximability as the vertex cover problem. However, the reduction in [1] does not conclude inapproximability of EC, since it does not have a gap preserving property [7].

In this paper, we give a lower bound for the approximation ratio for EC by the following steps. We construct an instance of CVC from that of MAX E3-SAT so that the reduction have a gap preserving property. Further, we reduce a CVC instance to that of EC. Finally, we establish a lower bound for the approximation ratio for EC.

2. Construction of an Instance of the Connected Vertex Cover Problem

CVC is a variant of the vertex cover problem which requires the subgraph induced by a cover-set must be connected. In this section we give a gap preserving reduction from MAX E3-SAT to CVC. We show that CVC on a certain class of graphs is hard to approximate within a ratio 41/40.

2.1 Reduction from an Instance of MAX E3-SAT

MAX 3-SAT is the problem of finding a truth assignment which maximizes the number of satisfied clauses for a given 3-CNF \(\phi \), and is known to be NP-complete. If each clause has exactly three literals, the problem is called as MAX E3-SAT and is also NP-complete [3]. Under the assumption that \(P \neq NP \), it is not possible to approximate MAX E3-SAT within a ratio less than 8/7 in polynomial time [3]. Here we construct a gap preserving reduction from an instance of MAX E3-SAT to CVC.

Let \(n \) be the number of variables, and \(m \) be the number of clauses. Let \(x_i (i = 1, 2, \ldots, n) \) be the variables, and \(C_j (j = 1, 2, \ldots, m) \) be the clauses. We assume that \(x_i \) appears \(t_i \) times in \(\phi \). From \(\phi \), we construct a graph \(G = (V, E) \) as follows.

For each variable \(x_i \), we have a set of vertices \(X_i = \{x_i^l, \bar{x}_i^l| j = 1, 2, \ldots, t_i \} \) and a set of edges \(E(x_i) = \{(x_i^j, \bar{x}_i^j)\} \), which constructs a bipartite graph \(K_{d_i, d_i} = G(x_i) \). We have vertices \(c_0 \) and \(d_0 \), an edge \(e_0 = \{c_0, d_0\} \) and \(E_{00} = \{(c_0, x_i^j), (c_0, \bar{x}_i^j)| j = 1, 2, \ldots, t_i\} \). For each clause \(C_j \), we have vertices \(c_j \) and \(d_j \) and an edge \(e_j = \{c_j, d_j\} \). Edges between \(c_j \) and \(G(x_i) \)'s vertices correspond to the literals in \(C_j \) as follows. Let \(l_1, l_2, l_3 \) be the three literals in \(C_j \). A literal \(l_1 \) is a variable \(x_i \) or its negation \(\bar{x}_i \) that appears at \(l_1 \)th position in \(\phi \). If the literal is \(x_i \), we add an edge \(e_j^0 = \{x_i^l, c_j\} \), otherwise \(e_j^0 = \{\bar{x}_i^l, c_j\} \). We add edges \(e_j^2, e_j^3 \) in the same way for the literals \(l_2, l_3 \).

From this construction, we define a graph \(G = (V, E) \) as....
Proof. If \(\phi \) is satisfiable

\[|S_{\text{cyl}}| = 4m + 1. \]

Proof. Let \(S \) be a solution of CVC and let \(V(x_i) \equiv \{x_i^j \mid j = 1, 2, \ldots, t_i\} \), \(V(\bar{x}_i) \equiv \{\bar{x}_i^j \mid j = 1, 2, \ldots, t_i\} \). In order to cover all edges of \(G(x_i) \), we need

\[V(x_i) \subseteq S \quad (1) \]

or

\[V(\bar{x}_i) \subseteq S \quad (2) \]

for each \(i \). In order to cover \(e_i \), we need \(c_0 \in S \) or \(d_0 \in S \). As \(\sum_{i=1}^{n} t_i = 3m \), in order to cover all edges of \(G(x_i) \) and \(E_0 \), we need at least \(3m + 1 \) vertices. For each \(j (1 \leq j \leq m) \), we need \(c_j \in S \) or \(d_j \in S \) to cover \(e_j \). Hence we need \(|S| \geq 4m + 1 \).

In order to prove Lemma 1, it is sufficient to show the existence of a solution \(S \) with \(|S| = 4m + 1 \). We construct \(S \) from \(\phi \) as follows. If \(\phi \) assigns TRUE to \(x_i \), we set \(V(x_i) \) into \(S \). Otherwise we set \(V(\bar{x}_i) \) into \(S \). We also include all \(c_j (j = 1, 2, \ldots, m) \) to cover all \(e_j \) and \(e_j' \). Since \(\phi \) is satisfiable, each clause has at least one literal which is TRUE and each \(c_j \) is connected with a vertex of \(V(x_i) \) or \(V(\bar{x}_i) \) in \(S \). Now \(|S| = 3m + m\), and all vertices in \(S \) are connected. Further, we choose \(c_0 \in S \) so that \(S \) covers \(e_0 \) and \(E_0(i = 1, 2, \ldots, n) \). \(S \) induces a connected subgraph of \(G \), and covers all of edges of \(S \). \(S \) is optimal since \(|S| = 4m + 1\).

We have another lemma.

Lemma 2: If no assignment satisfies more than \((1 - \epsilon)m\) clauses of \(\phi \),

\[|S_{\text{cyl}}| \geq 4m + 1 + em. \]

Proof. A solution \(S \) of CVC induces an assignment \(A \) of variables of \(\phi \) as follows. If (1) holds and (2) does not, \(A \) gives \(x_i \) TRUE. If (2) holds and (1) does not, \(A \) gives \(x_i \) FALSE. If both (1) and (2) hold, \(A \) gives \(x_i \) either TRUE or FALSE. We say that this solution is consistent with the corresponding assignment \(A \).

From the proof of Lemma 1, \(|S| \geq 4m + 1\). Recall that \(A \) does not satisfy at least \(em \) clauses. If \(A \) does not satisfy a clause \(C_j \), in order to connect \(e_j \) with \(S(G_{x_i}) \), \(S \) must include a vertex of \(G(x_i) \) corresponding to a literal to which \(A \) assigns FALSE. So for any solution, in order to connect all \(c_j (j = 1, 2, \ldots, m) \) with \(S(G_{x_i}) \), additional \(em \) vertices of \(S(G_{x_i}) \) must be included in \(S \) and thus we have \(|S| \geq 4m + 1 + em \).

Now We have the following theorem.

Theorem 1: CVC for \(G \) constructed above is NP-hard to approximate within a ratio \(41/40 \).

Proof. From Lemma 1, Lemma 2 and \(\epsilon = 1/8 \), \(m \geq 1 \)

\[\frac{4m + 1 + em}{4m + 1} = 1 + \frac{\epsilon}{4 + \frac{m}{2}} \geq 1 + \frac{1}{40} = 41 \cdot 40. \]

3. Inapproximability of the Edge-Contraction Problem

From \(G \) of the previous section, we construct an instance of the edge-contraction problem as follows. Let \(G(2) \) be the graph obtained from \(G \) by introducing a new vertex in the middle of each edge of \(G \). That is, we replace each edge of \(G \) with a path of length 2. We denote by \(A(2) \) the set of newly introduced vertices. Let \(M \) be a graph with the minimum number of vertices that violates \(\pi \). Since \(\pi \) is determined by biconnected components, \(M \) is biconnected. Let \(M - e \) be the graph obtained by deleting an edge \(e \) from \(M \). We construct \(G_1 \) from \(G(2) \) as follows. For every pair \(a, a' \) of vertices in \(A(2) \) which are adjacent to a common vertex in \(V(G) \), we attach, to \(a \) and \(a' \), \(k_i + 1 \) copies of \(M - e \) through
the node of e, where k_1 is an integer defined in the following proposition. Further, we denote by S_{ec} an optimal solution of the edge-contraction problem of G_1.

Proposition 1 (Asano and Hirata [1]): There is a subset S of $E(G_1)$ with $|S| \leq k_1$ such that the contraction G_1/S satisfies π if and only if G has a connected vertex cover of size $\leq k$, where $k_1 = k + |E(G)| - 1$.

We denote S_{ec} as an optimal solution of CVC in case that ϕ has a satisfiable assignment, and denote S'_{ec} otherwise. From the proposition, the size of the optimal solution of EC is $|S_{ec}| + |E(G)| - 1$ if ϕ is satisfiable, and it is at least $|S'_{ec}| + |E(G)| - 1$ if ϕ is unsatisfiable. So it is NP-hard for EC with respect to the property π to approximate within a ratio

$$r_{ec} = \frac{|S'_{ec}| + |E(G)| - 1}{|S_{ec}| + |E(G)| - 1}.$$

From an instance of CVC which is reduced from an instance of MAX E3-SAT, we have

$$|E(G)| = m + 3m + 6m + 1 + \sum_{i=1}^{n} t_i^2 = 10m + 1 + \sum_{i=1}^{n} t_i^2.$$

Further, if the number of appearance of all variables in ϕ is constant($= l$), $\sum_{i=1}^{n} t_i^2 = nl^2 = 3ml$. We use ϵ_l instead of ϵ in this case. By Lemma 1 and Lemma 2, $|S| = 4m + 1$, $|S'| \geq 4m + 1 + \epsilon_l m$. We conclude

$$r_{ec} = 1 + \frac{\epsilon_l}{14 + 3l + 1/m} > 1 + \frac{\epsilon_l}{15 + 3l}.$$

Now we have the following theorem.

Theorem 2: There is a constant r so that r-approximation of the edge-contraction problem of $G(2)$ is NP-hard.

Papadimitriou and Yannakakis [6] showed that in case of $l = 29$, $\epsilon_l = 1/(8 \cdot 43) = 0.0029069767$. Hence we have $r = \epsilon_l/102 = 1.00002849977$.

Replacing all edges in M with a path of length 2, we can make G_1 bipartite. Since π is hereditary on contraction, Proposition 1 still holds. In this case, we need π to be “determined by 3-connected components”. We omit details. See Corollary 4 of [1]. We have another theorem.

Theorem 3: There is a constant r so that r-approximation of the edge-contraction problem for π, restricted to bipartite graphs is NP-hard, where π is hereditary on contractions, and determined by 3-connected components.

4. Conclusions

We have shown that when a graph property π is hereditary on contractions and determined by biconnected components, the edge-contraction problem with respect to π is hard to approximate within a ratio $1 + \epsilon_l/(15 + 3l)$, where l is the number of appearance of each variable in MAX-E3 SAT, and ϵ_l is a ratio with which the approximation of MAX-E3 SAT is NP-hard. Furthermore, we have the same result for bipartite graphs when π is hereditary on contractions and determined by 3-connected components. Our future work is to seek a larger lower bound of the approximation ratio for EC with respect to π and inapproximability results of EC with respect to properties other than π considered here.

References