This study investigated the physiological effects of inhaled corticosteroids, which are used widely to treat asthma. The application of fluticasone propionate (FP, 100 μM) induced sustained increases in the short-circuit current (Isc) in human airway Calu-3 epithelial cells. The FP-induced Isc was prevented by the presence of H89 (10 μM, a protein kinase A inhibitor) and SQ22536 (100 μM, an adenylate cyclase inhibitor). The FP-induced responses involved bumetanide (a Na$^+$--K$^+$--2Cl$^-$ cotransporter inhibitor)-sensitive and 4,4'-dinitrostilbene-2,2'-disulfonic acid (an inhibitor of HCO$_3^-$-dependent anion transporters)-sensitive components, both of which reflect basolateral anion transport. Further, FP augmented apical membrane Cl$^-$ currents (Icl), reflecting cystic fibrosis transmembrane conductance regulator (CFTR)–mediated conductance, in the nystatin-permeabilized monolayer. In Isc and Icl responses, FP failed to enhance the responses to forskolin (10 μM, an adenylate cyclase activator). Nevertheless, we found that FP synergistically increased cytosolic cAMP concentrations in combination with forskolin. All these effects of FP were reproduced with the use of budesonide. Collectively, inhaled corticosteroids such as FP and budesonide stimulate CFTR-mediated anion transport through adenylate cyclase–mediated mechanisms in a nongenomic fashion, thus sharing elements of a common pathway with forskolin. However, the corticosteroids cooperate with forskolin for synergistic cAMP production, suggesting that the corticosteroids and forskolin do not compete with each other to exert their effects on adenylate cyclase. Considering that such synergism was also observed in the FP/salmeterol combination, these nongenomic aspects may play therapeutic roles in mucus congestive airway diseases, in addition to genomic aspects that are generally recognized.

Keywords: fluticasone propionate; budesonide; cAMP; anion transporter; forskolin

Inhaled corticosteroids are well-established anti-inflammatory therapies for the prophylactic treatment of asthma, and are recommended in national treatment guidelines as first-line therapy in persistent asthma (1). Beclomethasone dipropionate has been in use for almost 30 years as an inhaled asthma medication (2). In the 1990s, fluticasone propionate (FP) and budesonide, with more potent anti-inflammatory effects than beclomethasone dipropionate, were introduced and remain the drugs of first choice (3, 4). In general, anti-inflammatory effects of corticosteroids are well recognized to depend on the classic steroid receptors (5). Their effects involve a complex process, including ligand-receptor binding in the cytosol, targeted gene expression, and protein synthesis, so that hours may pass before the onset of hormone actions (6). This is called the genomic mechanism. However, several lines of evidence have demonstrated that sex steroids and xenoestrogens also exert their effects via nongenomic mechanisms, which are acute in onset and require membrane steroid receptors without the involvement of nuclear steroid receptors and gene expression (6). The rapid interaction leads to changes in the kinetics of ion channels such as K$^+$ channels (7, 8), L-type Ca$^{2+}$ channels (9, 10), and Cl$^-$ channels (11, 12) in various kinds of cells. Despite the evidence, however, less attention has been paid to the acute effects of inhaled corticosteroids on ion channels and transporters. Because steroids are applied directly to the apical side of the respiratory tract, higher concentrations of the drugs on the airway surface are supposed to be achieved than with intravenous application. It is generally established that anion transport mediated through the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel is important in the formation of low-viscosity mucus, thereby maintaining a conductive and aseptic environment in the lung (13). Indeed, dysfunction of the CFTR, as seen in patients with cystic fibrosis, results in the production of thick mucus plugs and consequently causes serious respiratory damage (13). Thus, a potential strategy to combat airway obstructive diseases has involved exploring the pharmacological agents that up-regulate CFTR-mediated ion transport. In the present study, we focused especially on the nongenomic effects of inhaled corticosteroids on anion secretion in human airway epithelial cells.

CLINICAL RELEVANCE

We demonstrate that fluticasone propionate and budesonide stimulate cystic fibrosis transmembrane conductance regulator–mediated anion transport through adenylate cyclase–mediated mechanisms in a nongenomic fashion. The effects of the corticosteroids on adenylate cyclase synergistically enhance the production of cAMP, in combination with cAMP-related agents (e.g., forskolin and salmeterol). The nongenomic effects may involve therapeutic aspects for mucus congestive airway diseases, such as bronchial asthma and chronic obstructive pulmonary disease, in addition to genomic effects that are conventionally recognized.

MATERIALS AND METHODS

Chemicals

Forskolin, nystatin, 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS), 5-nitro-2-(3-phenylpropylamino)benzoate (NPPB), and 9-tetrahydro-2-furyl-adenine (SQ22536) were obtained from Sigma-Aldrich Co. (St. Louis, MO). Bumetanide and N-[2-(p-bromocinnamylamino)
Generating sustained ISC (Figure 1A). The difference between the samples according to the manufacturer’s instructions. ISC, circuit current (ISC) measurements, as previously described (15). ISC was increased to 4 mM to compensate for the Ca\(^2\+)

The gluconate (16).

The basal ISC and transepithelial resistance in our experiments using Calu-3 cells were 11.7 ± 4.7 μA/cm\(^2\) and 350.4 ± 80.1 Ω cm\(^2\), respectively (n = 84). The cell monolayer immediately responded to the application of FP (100 μM) from the apical aspect, generating sustained ISC (Figure 1A). The difference between the maximum and basal ISC (ΔISC) was 9.2 ± 1.3 μA/cm\(^2\) (n = 5). The fluticasone propionate–induced anion secretion was reduced by the application of NPPB (100 μM), a Cl\(^-\) channel blocker: the NPPB-sensitive component was 13.6 ± 2.8 μA/cm\(^2\) (n = 5, P < 0.01), in comparison to that without FP (5.2 ± 0.9 μA/cm\(^2\), n = 5; Figure 1B). To confirm the validity of 100 μM FP, we cumulatively added various concentrations of FP at intervals of approximately 5–10 minutes, because FP-induced ISC responses reach a sustained state by 10 minutes, with the result that the ΔISC was increased in concentration-dependent manner. The concentration for the half-maximal effect was 61.9 ± 15 μM (n = 4; Figure 1C).

Compared with the ISC responses of the control sample to FP (Figure 2A), those in the presence of CAMP-related inhibitors (Figures 2B and 2C) were significantly suppressed. Namely, the FP-induced ISC (ΔISC = 9.0 ± 2.0 μA/cm\(^2\), n = 5) was reduced to 2.1 ± 1.0 μA/cm\(^2\) (n = 5, P < 0.01) and 0.8 ± 0.5 μA/cm\(^2\) (n = 5, P < 0.01) by the presence of the protein kinase A (PKA) inhibitor H89 (10 μM) and the adenylate cyclase inhibitor SQ22536 (100 μM), respectively (Figure 2D). Effects of Fluticasone Propionate on Apical and Basolateral Anion Transporters

Anion secretion in Calu-3 cells is the product of coordinated activities of anion transporters on the apical and basolateral

Figure 1. Representative traces of fluticasone dipropionate (FP) on short-circuit current (I\(_{sc}\)) response in Calu-3 cells. (A) The cell monolayer immediately responded to FP (100 μM) applied from the apical aspect, generating sustained ISC. The FP-induced response was reduced by the application of 5’-nitro-2-(3-phenylpropylamino) benzoate (NPPB, 100 μM), a Cl\(^-\) channel blocker. (B) The NPPB-sensitive components in the FP-induced ISC [FP (+)] were compared with those without FP [FP (−)]. (C) Increases in ISC values in response to FP at various concentrations were measured. The maximum increases in ISC from basal concentrations (i.e., ISC values just before the addition of FP) are expressed as ΔISC. Data represent means ± SD (n = 4–5). *P < 0.01, significantly different from the values in the FP (−) groups.
membranes (16). In the cells, basolateral anion uptake is regulated by several anion transporters, including the bumetanide-sensitive Na\(^+\)-K\(^+\)-2Cl\(^-\) cotransporter NKCC1 (21), the DNDS-sensitive Na\(^+\)-2HCO\(_3\)\(^-\) cotransporter NBC1 (22), and the DNDS-sensitive HCO\(_3\)\(^-\)/Cl\(^-\) exchanger AE2 (23). The HCO\(_3\)\(^-\) and Cl\(^-\) taken up by the cells commonly pass through the CFTR, a cAMP-regulated anion channel, in Calu-3 cells (16). Because basolateral anion entry is generally the rate-limiting step for transepithelial anion transport (24), we estimated the functions of basolateral anion transporters by measuring bumetanide (50 \(\mu M\))–sensitive and DNDS (2 mM)–sensitive components in the FP-induced ISC. As shown in Figure 3A, both components comprise the FP-induced ISC (Figure 3A). Compared with the control sample, the former and latter components were increased, from 0.9 ± 0.7 \(\mu A/cm^2\) (\(n = 6\)) and 1.0 ± 0.2 \(\mu A/cm^2\) (\(n = 6\)) to 5.0 ± 1.5 \(\mu A/cm^2\) (\(n = 6\), \(P < 0.01\)) and 4.6 ± 1.1 \(\mu A/cm^2\) (\(n = 6\), \(P < 0.01\)), respectively (Figures 3B and 3C). On the other hand, apical Cl\(^-\) export was estimated as I\(_{\text{Cl}}\) in the nystatin-permeabilized monolayer in Figures 3D and 3E. Correlated with ISC changes, the application of FP (100 \(\mu M\)) caused the development of an inward I\(_{\text{Cl}}\) (\(\Delta I_{\text{Cl}} = 11.6 ± 4.5 \mu A/cm^2\) at 20 minutes after its addition, \(n = 6\); Figures 3D and 3F). The increases in the FP-induced I\(_{\text{Cl}}\) were counteracted by pretreatment with NPPB (100 \(\mu M\)), inhibitors of CFTR (\(\Delta I_{\text{Cl}} = 1.5 ± 0.9 \mu A/cm^2\), \(n = 6\), \(P < 0.01\); Figures 3E and 3F).

Figure 2. Pharmacological characterizations of short-circuit current (ISC) in response to fluticasone dipropionate (FP) in Calu-3 cells. ISC responses to FP (100 \(\mu M\), apical) in the control sample (A) were compared with those in the presence of H89 (B) (10 \(\mu M\), a protein kinase A inhibitor), and 9-tetrahydro-2-furyl-adenine (C) (SQ22536; 100 \(\mu M\), an adenylyl cyclase inhibitor). (D) A summary of the FP-induced ISC increases (\(\Delta I_{\text{ISC}}\)) obtained from A (FP), B (H89 + FP), and C (SQ + FP). Data represent means ± SD (\(n = 5\)). *\(P < 0.01\), significantly different from the values under the conditions without the inhibitors.

Figure 3. Functional analyses of fluticasone dipropionate (FP)–activated anion transporters on the basolateral and apical membrane. (A) FP-induced ISC was reduced by the application of bumetanide (BMT, 50 \(\mu M\), basolateral) and 4,4’-dinitrostilbene-2,2’-disulfonic acid (DNDS, 2 mM, basolateral). (B and C) Bumetanide-sensitive and DNDS-sensitive components in the ISC (expressed as BMT-s and DNDS-s ISC, respectively), with and without the application of 100 \(\mu M\) FP, are shown as FP (1) and FP (2), respectively. (D and E) Representative traces of changes in apical Cl\(^-\) conductance, estimated as I\(_{\text{Cl}}\) in the absence and presence of NPPB (100 \(\mu M\), an effective CFTR blocker), respectively. The I\(_{\text{Cl}}\) currents were measured after the establishment of an apical-basolateral Cl\(^-\) gradient and permeabilization of the basolateral membrane with nystatin (100 \(\mu M\), for more than 20 min). A downward I\(_{\text{Cl}}\) indicates an inward Cl\(^-\) current. (F) A summary of the values of FP-induced I\(_{\text{Cl}}\) increases (\(\Delta I_{\text{Cl}}\)) obtained from D (FP) and E (NPPB + FP). Data represent means ± SD (\(n = 6\)). Significant differences are expressed as *\(P < 0.01\) (unpaired Student t test). CFTR, cystic fibrosis transmembrane conductance regulator.
Bioelectric Interactions between FP and Forskolin-Stimulated Responses

cAMP-related stimuli are well-known to generate I_{SC} augmentations that reflect electrogenic anion transport. Indeed, the application of forskolin (10 μM, an adenylyl cyclase activator; Figure 4A) to the basolateral face led to a rapid increase in I_{SC}, followed by a sustained component that is inhibited by bumetanide and DNDS. Figure 4B shows that the forskolin-induced increases in I_{SC} were attenuated by the presence of FP (100 μM). The forskolin-induced I_{SC} increases (ΔI_{SC}) were diminished from 52.5 ± 5.0 μA/cm² (n = 6) to 20.3 ± 4.3 μA/cm² (n = 6, P < 0.01) in the peak component, and from 21.9 ± 3.0 μA/cm² (n = 6) to 8.7 ± 2.4 μA/cm² (n = 6, P < 0.01) in the sustained component when both of them were estimated as increases from the I_{SC} concentrations just before the application of forskolin. When they are estimated as increases from basal I_{SC} concentrations before the application of FP, however, the sustained ΔI_{SC} values in the absence of FP were not significantly different from those in its presence (Figures 4B: ΔI_{SC} = 19.3 ± 4.9 μA/cm²). Indeed, the bumetanide-sensitive and DNDS-sensitive components (7.9 ± 2.3 μA/cm² and 8.4 ± 2.0 μA/cm², n = 6, respectively) in the sustained I_{SC} in the experiments shown in Figure 4A were not significantly different from those in the experiments shown in Figure 4B (7.6 ± 1.9 μA/cm² and 9.0 ± 1.7 μA/cm², n = 6, respectively). In the nystatin-permeabilized monolayer used for the estimation of apical Cl⁻ conductance, FP-induced I_{Cl} increases under the forskolin-stimulated condition were markedly suppressed (2.1 ± 0.7 μA/cm², n = 6; Figure 4C), compared with those under the forskolin-untreated condition (11.2 ± 3.8 μA/cm², n = 6; Figure 4D). In the presence of FP (100 μM; Figure 4D), the I_{Cl} increases attributable to the application of forskolin were attenuated. The forskolin-induced I_{Cl} increases (ΔI_{Cl}) were suppressed to 10.6 ± 2.3 μA/cm² (n = 6, P < 0.01), compared with those in the absence of FP (21.0 ± 5.0 μA/cm², n = 6). However, the values were not significantly different from total I_{Cl} developments attributable to the combination of FP and forskolin that were estimated as increases from basal concentrations (21.9 ± 4.2 μA/cm², n = 6).

BUD Reproduced the Effects of Fluticasone Propionate

Figure 5A shows representative traces of BUD (100 μM)–induced I_{SC} (ΔI_{SC} = 6.2 ± 2.8 μA/cm², n = 5). Like the effects of FP, the bumetanide-sensitive and DNDS-sensitive I_{SC} (0.9 ± 0.3 μA/cm², n = 5, and 1.0 ± 0.5 μA/cm², n = 5, respectively) were significantly increased to 2.8 ± 1.0 μA/cm² (n = 5) and 3.5 ± 1.2 μA/cm² (n = 5, P < 0.01), respectively, by the application of BUD (Figures 5B and 5C). Apical Cl⁻ export was estimated as I_{Cl} in the nystatin-permeabilized monolayer in Figures 5D and 5E. Under the forskolin-untreated condition, the application of BUD (100 μM) caused the development of an inward I_{Cl} (ΔI_{Cl} = 6.1 ± 2.2 μA/cm², n = 4; Figure 5D). Compared with the response, BUD-induced I_{Cl} increases under the forskolin-stimulated condition were markedly suppressed (ΔI_{Cl} = 1.9 ± 0.7 μA/cm², n = 4, P < 0.05; Figure 5E).

Effects of FP and BUD on Cytosolic cAMP Concentrations

In the cytosolic cAMP assay (Figure 6), applications of FP for 30 minutes did not cause significant changes in [cAMP]ᵢ (3.5 ± 1.4 pmol/10⁶ cells, n = 6), compared with the control sample (4.0 ± 1.7 pmol/10⁶ cells, n = 6), despite the I_{SC} and I_{Cl} changes. Nor did BUD applications cause significant changes in basal [cAMP]ᵢ (4.0 ± 1.3 pmol/10⁶ cells, n = 6). Forskolin stimulation for 20 minutes increased [cAMP]ᵢ to 54.8 ± 7.9 pmol/10⁶ cells, whereas the presence of FP and BUD potentiated the effects of forskolin, increasing [cAMP]ᵢ concentrations further to 160.3 ± 14.3 pmol/10⁶ cells (n = 6, P < 0.01) and 141.6 ± 25.4 pmol/10⁶ cells (n = 6, P < 0.01), respectively. In addition, a similar synergism was observed in the effects of another inhaled corticosteroid, beclomethasone dipropionate (100 μM), under the same conditions (164.3 ± 18.0 pmol/10⁶ cells, n = 6, P < 0.01).

DISCUSSION

The local delivery of inhaled corticosteroids may yield considerably higher concentrations on the airway surface. FP is considered to be slowly absorbed over a long period of time after deposition in the lungs (25). The total lung deposition of radio-labeled FP administered with a metered dose inhaler has been shown to range from 10–36% (22% ± 9%) in adults (26). To determine the average concentration of a drug on the airway surface after its deposition, it is necessary to know the volume of the airway surface liquid. Widdicombe (27) estimated that the liquid volumes are 1.0 ml for the trachea and bronchi, and
In general, cAMP/PKA is a key molecule for anion secretion in any polarized epithelial cell, including Calu-3 submucosal gland cells (30). In the present study, we showed that the FP-induced I_{SC} responses were composed of rapid increases and subsequent sustained increases, as demonstrated in previous studies using cAMP-related agents (16, 31). Especially in the forskolin-induced responses, the sustained levels were much lower than the initial peak points (Figure 4A). However, the peak components were not detected in the changes of apical membrane Cl$^-$ conductance in the nystatin-permeabilized monolayer (Figure 4C). In general, cAMP-dependent anion secretion is characterized not only by apical CFTR activation, but also by the parallel activation of NKCC1 and NBC1/AE2 anion transporters (15, 20). Thus, it is conceivable that (1) the initial phase is produced by a gush of anions that had accumulated in the cells beforehand, and (2) the sustained phase is maintained by the function of basolateral anion transporters such as NKCC1, NBC1, and AE2. During anion transport, however, the cAMP-dependent

2.6 ml for the conducting bronchioles. Combining these lines of information indicates that inhaling FP (molecular weight, 500.57) at 800 μg (1.6 μmol) by mouth would result in the average concentration on the airway surface as follows: airway surface FP = 1.6 μmol × 0.22 (% lung deposition)/(1.0 + 2.6) ml = 98 μM.

However, the deposition of inhaled FP in the airways is uneven (28), and FP is predominantly deposited in the proximal respiratory tract (29). Based on this conjecture, we applied FP at 100 μM to the airway epithelial cells, resulting in immediate rises of I_{SC}, followed by sustained currents. The FP-induced responses were inhibited by the presence of NPPB (a Cl$^-$ channel blocker), bumetanide (an inhibitor of the NKCC1 Na$^+$–K$^+$–2Cl$^-$ cotransporter), or DNDS (an inhibitor of the NBC1/AE2 HCO$_3^-$–dependent anion transporter), suggesting that the FP-induced responses are composed of anion secretion. The concentration for the half-maximal effect was approximately 60 μM, which is possibly within the range of the clinically used concentration.

Figure 5. I_{SC} and I_{Cl} responses to budesonide (BUD, 100 μM) in Calu-3 cells. (A) The BUD-induced I_{SC} was reduced by the application of bumetanide (BMT, 50 μM, basolateral) and DNDS (2 mM, basolateral). (B and C) BMT-sensitive and DNDS-sensitive components in the I_{SC} (expressed as BMT-s and DNDS-s I_{SC}, respectively) under the basal condition [BUD (−)], and those components after stimulation with BUD [BUD (+)], respectively. *Significant differences are expressed as $P < 0.01$ (n = 5). (D and E) Representative traces of the BUD (100 μM)–induced I_{Cl} in the absence and presence of forskolin (FK, 10 μM) in the monolayer permeabilized with a basolateral application of nystatin (100 μM). (D) The application of BUD from the apical aspect stimulated inward sustained I_{Cl}. (E) Under the forskolin-stimulated condition, the effect of BUD suppressed the change in I_{Cl}.

Figure 6. Effects of inhaled corticosteroids on changes in cytosolic cAMP concentrations ($[cAMP]_i$) in the forskolin (FK)–unstimulated and FK-stimulated groups. In the former groups, the measurements were performed 30 minutes after the addition of fluticasone dicipionate (FP, 100 μM), budesonide (BUD, 100 μM), and or its vehicle (0.05% DMSO, control). In the latter, the monolayer was exposed to FK for 20 minutes after a 30-minute pretreatment with FP or BUD. Data represent means ± SD (n = 6). *$P < 0.01$ and †$P < 0.01$ indicate significant differences from the values of FK-unstimulated (shown as “control”) and FK-stimulated control groups (shown as “FK”), respectively.
regulation of NKCC1 is indirect and is attributable to the secondary effects of cAMP on changes in cell volume, the cytoskeleton, and intracellular Cl⁻ concentrations, leading to the regulation of various kinases, including protein kinase C (32, 33).

We also showed that stimulation by FP failed to enhance the ISC and ICl responses to forskolin, namely, (1) bumetanide-sensitive and DNDS-sensitive components in the forskolin-stimulated ISC were not significantly increased by the presence of FP, and (2) forskolin-induced ICl was less up-regulated by FP. These observations suggest that FP and forskolin share elements of a common signaling pathway for the activation of CFTR, NKCC1, NBC1, and AE2.

In the cytosolic cAMP assay, however, we found that FP synergistically increased [cAMP]i in combination with forskolin. Similar results were obtained by using a combination of FP and the β2-adrenergic receptor (β2-AR) agonist salmeterol, which are currently used as a standard combination therapy for patients with asthma (see Figure E2 in the online supplement). Thus, FP is likely to exert its effects on adenylate cyclase without competing with the conventional pathway for the activation of adenylate cyclase by means of forskolin or β2-AR stimulation. However, our results of no significant effects of FP on [cAMP]i in the absence of forskolin do not necessarily negate the involvement of cAMP in the effects of FP. A signaling pathway to activate an apical adenylate cyclase closely associated with CFTR in Calu-3 cells has been proposed (34). Like the inhaled corticosteroids, cAMP/PKA-related agents such as phosphodiesterase inhibitors and adenosine also stimulate Cl⁻ secretion in the setting of very low or often undetectable [cAMP]i concentrations (31, 35). In general, these observations have been also interpreted as the results of compartmentalized changes in cAMP concentrations in the subcellular region (34, 36).

In the present study, we demonstrated that BUD reproduced the effects of FP on ISC, ICl, and [cAMP]i. Becloamethasone dipropionate also potentiated [cAMP]i, in the presence of forskolin, and it caused similar but smaller effects in ISC (data not shown). This suggests that the nongenomic effects of inhaled corticosteroids share a common mechanism.

In Calu-3 cells, cAMP stimulation induces the parallel activation of NKCC1 and NBC1/AE2, as did FP and BUD, whereas Ca²⁺-mediated stimuli generate the selective up-regulation of NKCC1 (15, 16, 20, 37). Although the Ca²⁺-induced Cl⁻ secretion is inhibited by charybdotoxin, a selective KCNN4 Ca²⁺-activated K⁺ channel blocker (30), neither FP-induced nor BUD-induced responses were sensitive to charybdotoxin (data not shown). This indicates less of a contribution of Ca²⁺-mediated mechanisms to the nongenomic effects of FP and BUD.

Taken together, inhaled corticosteroids such as FP and BUD stimulate CFTR-mediated anion transport through adenylate-cyclase–mediated mechanisms in a nongenomic fashion, thus sharing elements of a common signaling pathway for the activation of cAMP-activated anion transporters (e.g., CFTR) with other cAMP-related stimuli. However, the combination of corticosteroids with forskolin induces the synergistic production of cAMP, suggesting that corticosteroids and forskolin have different target sites on adenylate cyclase. Figure 7 constitutes a schematic drawing of the hypothetical mechanism, taking the effects of FP on the CFTR as an example. Likewise, the combination of FP and a β2-AR agonist salmeterol synergistically increases cytosolic cAMP concentrations. Thus, FP/salmeterol combination therapies, which are currently used for bronchial asthma and chronic obstructive pulmonary disease, may comprise more rational treatments than previously thought. The nongenomic effects of these agents may involve therapeutic aspects for mucus congestive airway diseases, in addition to their genomic effects that are generally recognized.

References

Figure 7. Hypothetical models of the mechanisms underlying the effects of fluticasone dipropionate (FP) on the CFTR, a cAMP-activated Cl⁻/HCO₃⁻ channel on the apical membrane.

(A) Basal activities of CFTR are maintained by basal protein kinase A (PKA)–mediated phosphorylation. (B) FP stimulates the cAMP-signaling pathway from adenylate cyclase (AC) to CFTR in the subcellular region. In the process, locally generated cAMP to activate CFTR is at undetectable [cAMP]i concentrations. (C) The stimulation of AC by forskolin (FK) or Gₛ-, protein–coupled β₂-adrenergic receptor (β₂-AR) activated the CFTR, with detectable increases in [cAMP]. (D) The effects of FP on AC synergistically enhanced cAMP production, in combination with these cAMP-related agents. FP exerts its effect on AC without competing with the conventional pathway for AC activation.

