Title:
Hyperamylasemia and pancreatitis following posterior spinal surgery

Running title
Hyperamylasemia after spinal surgery

Authors:
Kazuyoshi Kobayashi, MD; Shiro Imagama, MD; Zenya Ito, MD; Kei Ando, MD; Ryuichi Shinjo, MD; Hideki Yagi, MD; Tetsuro Hida, MD; Kenyu Ito, MD; Yoshimoto Ishikawa, MD; Naoki Ishiguro, MD

Corresponding Author:
Shiro Imagama, MD
Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine.
65, Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
Email address: imagama@med.nagoya-u.ac.jp;
Tel: +81-52-741-2111; Fax: +81-52-744-2260
Abstract

Background: Postoperative pancreatitis has primarily been reported as a complication of abdominal surgery, but there are some case reports of postoperative pancreatitis after spinal surgery. The objective of this study was to investigate a case series of hyperamylasemia and pancreatitis following posterior spinal surgery.

Methods: The serum amylase level was measured following posterior spinal surgery in the prone position. Patients were divided into groups with a normal serum amylase level (0-125 IU/L) and with hyperamylasemia (>125 IU/L), based on the upper limit of normal of 125 IU/L in our institution. Relationships among preoperative factors, perioperative factors, and the serum amylase level were investigated.

Results: Hyperamylasemia (serum amylase >125 IU/L) following posterior spinal surgery was found in 92 cases (35%). Among perioperative factors, intraoperative estimated blood loss (EBL) and operating time were significantly higher in patients with high serum amylase than in patients with normal serum amylase (P < 0.01). In a multivariate regression model, intraoperative EBL (OR 1.001, 95%CI 1.000-1.002; p=0.001) and operation time (OR 1.006, 95%CI 1.003-1.009; p=0.006) were significantly associated with postoperative pancreatitis. Serum amylase levels of ≥5 times the upper limit of normal were found in 6 cases. Five of these cases were asymptomatic and one was caused by severe pancreatitis.

Conclusions: In our case series, intraoperative blood loss caused a rise in the serum amylase level following posterior spinal surgery. Thus, this level should be carefully monitored after spinal surgery with significant blood loss. Clinical symptoms of pancreatitis, such as abdominal pain and vomiting, should also be monitored following spinal surgery.
Introduction

Pancreatitis is a life-threatening systemic disease involving multisystem organ failure. Postoperative pancreatitis has a high mortality rate (10-45%) and has primarily been reported as a complication of abdominal or anterior spine surgery [1-3], but has also recently been identified as a complication of scoliosis surgery [4]. The serum amylase level is currently used for diagnosis of pancreatitis, with a finding of hyperamylasemia suggesting a diagnosis of acute pancreatitis [5]. However, the association of hyperamylasemia with spinal surgery has not been previously investigated.

Materials and Methods

A total of 352 spinal surgeries were performed in our institution from January 2010 to December 2012, including 23 with an anterior or lateral approach and 329 with a posterior approach in the prone position. After exclusion of 67 cases in which amylase was not measured, the study was performed as a retrospective review of 262 cases of spinal surgery with a posterior approach in the prone position. A chest roll with a gel cushion was used in cervical spine surgery with a head pin, and a prone frame with a four-mount cushion was used for thoracic and lumbar spine surgery.

Data were abstracted from electronic medical records and included preoperative factors of age, gender, BMI, and comorbidities (diabetes mellitus, hyperlipidemia, and hypertension); perioperative factors of estimated blood loss (EBL), operating time, intraoperative diastolic pressure, and allogeneic RBC (red blood cell) transfusion; and outcomes including occurrence of postoperative pancreatitis, and serum levels of amylase, glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), lactate dehydrogenase, and creatine phosphokinase (CPK) on postoperative day (POD) 1.

Patients were divided into two groups based on the presence of a serum amylase level within the normal range (0-125 IU/L, normal group) or greater than the normal range (>125 IU/L, hyperamylasemia group). Preoperative factors, perioperative factors, and outcomes
were compared between the two groups. Results were also examined for cases in which the amylase level was ≥5 times the upper normal serum value, since this is the diagnostic criterion used by White et al. [6] to define postoperative pancreatitis.

Statistical significance was assessed by Student t-test, chi-square test, and Fisher exact test, with a significance level of $P < 0.05$. Odds ratios (ORs) and their 95% confidence interval (CI) were estimated with multivariate logistic regression models to evaluate the association of hyperamylasemia with preoperative factors, comorbidities, perioperative factors, and outcomes. All analyses were performed using SPSS (SPSS Inc., Chicago, IL, USA).

At study entry, all subjects gave written informed consent before examination. All aspects of the study were approved by the institutional review board.

Results

Preoperative serum amylase levels were within the normal range (upper limit of normal of 125 IU/L in our institution) in all 262 patients. Postoperatively, 92 patients (35%) had serum amylase levels >125 IU/L and were placed in the hyperamylasemia group. The surgical lesion sites in these cases were cervical (n=19), thoracic (n=37), and lumbar (n=36). There were no significant differences in preoperative factors (age, gender, BMI, and comorbidities) between the 92 patients with hyperamylasemia and the 170 patients with normal postoperative amylase levels. Among perioperative factors, EBL was significantly higher in the hyperamylasemia group (835 ± 938 vs. 323 ± 556 g, $P < 0.01$) and operating time was longer in the hyperamylasemia group (324 ± 154 vs. 234 ± 145 min, $P < 0.01$). On POD1, GOT ($42.4 ± 3.9$ vs. $30.3 ± 1.7$ IU/L, $P < 0.01$) and CPK ($1501.5 ± 202.2$ vs. $823.6 ± 116.8$ IU/L, $P < 0.01$) levels were significantly higher in the hyperamylasemia group (Table 1).

In multivariate logistic regression using perioperative factors, intraoperative EBL (OR $1.001, 95\%$CI 1.000-1.002; $p=0.001$) and operation time (OR 1.006, 95\%CI 1.003-1.009; $p=0.006$) were significantly associated with hyperamylasemia (Table 2).

There were six patients with a serum amylase level ≥5 times the upper limit of normal
In three of these cases, the serum amylase level was >1000 IU/L, which is 8 times the upper limit of the normal range, but lipase was only elevated in one of these cases. Nausea, vomiting and abdominal pain, hyperamylasemia and hyperlipasemia occurred in one case. Finally, this case was diagnosed as acute pancreatitis and required prompt treatment.

Increased intraoperative EBL was associated with an increased postoperative serum amylase level and hyperamylasemia (Table 4). EBL ≥ 1000 g occurred in 35 cases, of which 25 had hyperamylasemia (71%). In addition, hypertension was significantly associated with hyperamylasemia ($p=0.03$) in these 35 cases.

Discussion

Pancreatitis usually results from alcoholism, bile stones, exacerbation of chronic pancreatitis, or idiopathic causes [6], and has also occasionally been reported after abdominal surgery, primarily in association with gastroduodenal surgery [1,6]. In contrast, pancreatitis and hyperamylasemia after spinal surgery are relatively rare. Leichtner et al. first reported a case series of pancreatitis following scoliosis surgery in children and young adults [4]. Sasaki et al. reviewed 56 patients who underwent spine surgery in the prone position, and identified 14 patients with hyperamylasemia, including one who underwent posterior lateral fusion [23]. In a retrospective study of 355 patients who underwent spine fusion for neuromuscular scoliosis due to cerebral palsy, Borkhuu et al. found 109 cases (30.1%) of postoperative pancreatitis [10]. To the best of our knowledge, the current study is the largest to examine hyperamylasemia and pancreatitis after posterior spinal surgery (Table 5).

An amylase blood test is commonly requested in cases of abdominal pain, and particularly for a patient with acute abdominal pain. Postoperative blood tests are routinely conducted for anemia and infection, but serum amylase is often neglected in these tests. The diagnostic criteria for pancreatitis reported by White et al. include an amylase level ≥ 5 times the upper normal serum value [6], and serum amylase levels >1000 IU/L are highly suggestive of pancreatitis [5]. In this study, hyperamylasemia was detected in 92 patients (35%) and this
relatively high rate suggests that serum amylase should be measured in postoperative blood
tests. However, hyperamylasemia does not always cause pancreatitis and an increase in serum
amylose may be a nonspecific phenomenon without clinical implications. Some instances of
asymptomatic hyperamylasemia, such as salivary hyperamylasemia, may also be unrelated to
pancreatic diseases [11,12].

In a study of 44 patients undergoing single-stage surgery for scoliosis, Leichtner found
that 6 (14%) developed hyperamylasemia and 4 (9%) developed pancreatitis [4]. In our study,
derotation for scoliosis was performed in 33 patients, of whom 21 (61%) had
hyperamylasemia and none had postoperative pancreatitis. In addition, among 135 fusion
surgeries with instrumentation, excluding cases of scoliosis, 53 patients (39%) had
hyperamylasemia (p=0.01). Leichtner found no significant differences with regard to age,
surgical technique, degree of initial or residual deformity, or length of surgery. However, we
believe that scoliosis surgery is likely to lead to hyperamylasemia because of stress on the
abdominal blood vessels due to strong vertebral body rotation and correction in this surgery.

The etiology of postoperative hyperamylasemia and pancreatitis after spinal surgery is not
established, but poor general health, intraoperative positioning, and hypotensive anesthesia
have been suggested as potential risk factors [10,14-17]. In our cases, all surgeries were
performed using a posterior approach and the surgical site was distant from the pancreas. In
cervical surgery, patients were positioned using a chest roll with a gel cushion, and in thoracic
and lumbar surgery patients were positioned prone on a frame with a four mount cushion that
supported the thorax and pelvis, but not the abdomen. Such an apparatus may decrease
abdominal pressure. However, hyperamylasemia occurred after cervical spine surgery, in
which a frame was not used, as well as after thoracic or lumbar spine surgery. Thus, in this
series, hyperamylasemia occurred regardless of the surgical lesion.

Pancreatic ischemia may also be a cause of acute pancreatitis [4,18]. Tauchi et al. found
that pancreatitis after spinal posterior lumbar interbody fusion (PLIF) occurred as a result of
hypoperfusion of the pancreas due to increased intraoperative blood loss [19]. Relton et al.
suggested that use of so-called hypotensive anesthesia to maintain intraoperative blood
pressure is a risk factor for ischemia in scoliosis surgery [20], and Warshaw et al. confirmed
the effects of ischemic injury on the pancreas in autopsy examinations [21]. In the current
study, the mean intraoperative blood loss and operative time were significantly higher in
patients with postoperative hyperamylasemia compared to those with normal amylase, and
the levels of muscle enzymes such as GOT and CPK were also significantly higher in patients
with hyperamylasemia. Postoperative hyperamylasemia also increased in patients with high
EBL, and hypertension was significantly associated with hyperamylasemia in patients with
intraoperative EBL >1000 g. These observations are all related to surgical invasiveness; thus,
serum amylase elevation reflects reduced pancreatic blood flow due to increased EBL, and
characteristics of longer invasive surgery (such as increased EBL) may lead to
hyperamylasemia. These results are consistent with previous findings that pancreatic
ischemia is caused by increased EBL and may lead to pancreatitis [4,18,19]. However, blood
transfusion has not previously been linked to hyperamylasemia. The relationship between
RBC transfusion and hyperamylasemia is uncertain, but we routinely use intraoperative blood
recovery and autologous blood transfusion in cases with increased EBL. Therefore, cases
with allogeneic RBC transfusion are rarely associated with hyperamylasemia.

In abdominal surgery, White et al. suggested that postoperative pancreatitis might be due
to loss of blood flow and hypovolemic shock during surgery [6]. In spine surgery, Leichtner
et al. showed that greater blood loss was associated with postoperative pancreatitis in cases
with scoliosis [4]. In contrast, Borkhuu et al. found no association between blood loss during
surgery and postoperative pancreatitis in spine fusion with cerebral palsy [10]. In our series,
we examined postoperative pancreatitis and hyperamylasemia, and we found a significant
dependence of hyperamylasemia on EBL and operative time. However, the odds ratios were
low (EBL: 1.001, operation time:1.006). The series included many different surgeries,
including some with low EBL and a long operative time, such as surgery for spinal cord
tumor. In addition, the hyperamylasemia group (n=92) had a considerable range of serum
amylase levels (237-2907 IU/L), and these factors may explain why the correlations are relatively weak. In one of our cases of pancreatitis, the patient had continuous abdominal pain and vomiting for 2 hours postoperatively. Thus, pancreatitis should be suspected in cases with these symptoms from the early postoperative period. Changes in the serum amylase level and clinical symptoms should also be carefully monitored in cases with significant blood loss.

One limitation of this study was that serum amylase isoenzymes (pancreatic and salivary type) and lipase were not examined in all cases because there were no abdominal symptoms. These tests are only required for definite diagnosis of pancreatitis in cases with abdominal symptoms, but are also useful for diagnosis of pancreatitis.

In our series, hyperamylasemia was observed in 35% of cases on the day after spinal surgery and pancreatitis occurred in one patient. Surgery with a large amount of bleeding may be a risk for development of hyperamylasemia. In such cases, postoperative monitoring is needed to identify additional symptoms of pancreatitis, such as abdominal pain and vomiting.

Conflict of Interest

The authors declare that they have no competing interests.
References

22. Steinberg WM, Goldstein SS, Davis ND, Shamma'a J, Anderson K. Diagnostic assays in

Table 1. Demographics, operative details, POD1 data, and serum amylase levels in groups of patients with hyperamylasemia and with normal serum amylase levels.

<table>
<thead>
<tr>
<th></th>
<th>Hyperamylasemia (n=92)</th>
<th>Normal (n=170)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(>125 IU/L)</td>
<td>(0-125 IU/L)</td>
<td></td>
</tr>
<tr>
<td>Demographic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>51.7 (22.8)</td>
<td>55.6 (20.5)</td>
<td>0.08</td>
</tr>
<tr>
<td>Sex (females)</td>
<td>54</td>
<td>96</td>
<td>0.64</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>22.2 (7.0)</td>
<td>22.8 (4.9)</td>
<td>0.45</td>
</tr>
<tr>
<td>Comorbidities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>14</td>
<td>21</td>
<td>0.07</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>11</td>
<td>15</td>
<td>0.52</td>
</tr>
<tr>
<td>Hypertension</td>
<td>19</td>
<td>32</td>
<td>0.90</td>
</tr>
<tr>
<td>Serum Amylase (IU/L)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preoperative</td>
<td>66.1 (22.7)</td>
<td>62.7 (24.4)</td>
<td>0.13</td>
</tr>
<tr>
<td>POD1</td>
<td>306.4 (350.6)</td>
<td>73.0 (27.4)</td>
<td><0.01</td>
</tr>
<tr>
<td>Data on POD1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GOT (IU/L)</td>
<td>42.4 (3.9)</td>
<td>30.3 (1.7)</td>
<td><0.01</td>
</tr>
<tr>
<td>GPT (IU/L)</td>
<td>20.4 (4.2)</td>
<td>20.1 (1.2)</td>
<td>0.08</td>
</tr>
<tr>
<td>LDH (IU/L)</td>
<td>236.7 (9.8)</td>
<td>217.9 (7.4)</td>
<td>0.14</td>
</tr>
<tr>
<td>CPK (IU/L)</td>
<td>1501.5 (202.2)</td>
<td>823.6 (116.8)</td>
<td><0.01</td>
</tr>
<tr>
<td>Perioperative factors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBL (g)</td>
<td>835 (978)</td>
<td>323 (556)</td>
<td><0.01</td>
</tr>
<tr>
<td>EBL ≥ 1000 (cases)</td>
<td>25</td>
<td>10</td>
<td><0.01</td>
</tr>
<tr>
<td>Operation time (min)</td>
<td>324 (154)</td>
<td>234 (145)</td>
<td><0.01</td>
</tr>
<tr>
<td>Intraoperative diastolic pressure (mmHg)</td>
<td>49 (8)</td>
<td>50 (8)</td>
<td>0.11</td>
</tr>
<tr>
<td>Allogeneic RBC transfusion</td>
<td>10</td>
<td>6</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Data are shown as means with the standard deviation in parentheses.

BMI: body mass index
POD: postoperative day
EBL: estimated blood loss
RBC: red blood cell
Table 2. Multivariate logistic prediction model of risk for perioperative factors of hyperamylasemia

<table>
<thead>
<tr>
<th></th>
<th>Odds Ratio</th>
<th>95%CI</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated Blood Loss</td>
<td>1.001</td>
<td>1.000-1.002</td>
<td>0.001</td>
</tr>
<tr>
<td>Operation time</td>
<td>1.006</td>
<td>1.003-1.009</td>
<td>0.006</td>
</tr>
</tbody>
</table>

All variables were treated as continuous variables. The odds ratio is the increase in odds per unit increase in the predictor. Regression coefficients have been zero corrected.
Table 3. Summary of data for six patients with postoperative serum amylase levels ≥5 times the upper limit of normal serum values.

<table>
<thead>
<tr>
<th>Age / Sex</th>
<th>Diagnosis / Operation</th>
<th>BMI (kg/m²)</th>
<th>Comorbidities</th>
<th>Serum Amylase on POD1 (IU/L)</th>
<th>Serum Lipase on POD1 (IU/L)</th>
<th>EBL (RBC transfusion) (g)</th>
<th>Operation time (min)</th>
<th>Abdominal pain</th>
<th>Pancreatitis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 53/F</td>
<td>Spondylolisthesis (L3-5 PLIF)</td>
<td>27</td>
<td>DM/HT</td>
<td>2907</td>
<td>343</td>
<td>1096</td>
<td>246</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2 72/F</td>
<td>LCS (L3-S PLIF)</td>
<td>25</td>
<td>HT</td>
<td>1509</td>
<td>38</td>
<td>735</td>
<td>350</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3 68/F</td>
<td>C1-2 subluxation (C1-2 fixation)</td>
<td>30</td>
<td>HL/HT</td>
<td>1021</td>
<td>15</td>
<td>476</td>
<td>149</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4 57/F</td>
<td>CSM (C3-6 fixation)</td>
<td>29</td>
<td>DM</td>
<td>894</td>
<td>27</td>
<td>360</td>
<td>275</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5 61/F</td>
<td>Th-OPLL (Th5-9 fixation)</td>
<td>27</td>
<td>DM/HT</td>
<td>821</td>
<td>19</td>
<td>651</td>
<td>300</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6 73/F</td>
<td>LCS (L2-5 PLIF)</td>
<td>23</td>
<td>HT</td>
<td>818</td>
<td>40</td>
<td>1610</td>
<td>306</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

PLIF: posterior lumbar interbody fusion
LCS: lumbar canal stenosis
OPLL: ossification of the posterior longitudinal ligament
DM: diabetes mellitus
HL: hyperlipidemia
HT: hypertension
U: unit
Allo: allogeneic
Auto: autologous
Table 4. Relationship of serum amylase level and hyperamylasemia in groups with different estimated blood loss (EBL).

<table>
<thead>
<tr>
<th>EBL:</th>
<th>Preoperative</th>
<th>POD1</th>
<th>Hyperamylasemia (>125 IU/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td><100 g (n=82)</td>
<td>71.2 (25.9)</td>
<td>123.8 (143.9)</td>
<td>20% (n=17)</td>
</tr>
<tr>
<td>100-500 g (n=96)</td>
<td>66.1 (25.0)</td>
<td>122.5 (138.4)</td>
<td>27% (n=26)</td>
</tr>
<tr>
<td>501-1000 g (n=49)</td>
<td>76.5 (68.3)</td>
<td>197.2 (235.1)</td>
<td>49% (n=24)</td>
</tr>
<tr>
<td>>1000 g (n=35)</td>
<td>70.0 (24.5)</td>
<td>294.8 (491.7)</td>
<td>71% (n=25)</td>
</tr>
</tbody>
</table>

Data are shown as means with the standard deviation in parentheses.

POD: postoperative day
EBL: estimated blood loss
Table 5. Previous studies related to hyperamylasemia, pancreatitis, and spine surgery

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Number of patients</th>
<th>Average age (y)</th>
<th>Surgical procedure</th>
<th>Hyper amylasemia (>125 IU/L)</th>
<th>Hyper amylasemia (>625 IU/L)</th>
<th>Pancreatitis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leichtner et al.</td>
<td>1991</td>
<td>44</td>
<td>15</td>
<td>Posterior or anteroposterior fusion</td>
<td>10</td>
<td>NA</td>
<td>4</td>
</tr>
<tr>
<td>Sasaki et al. (in Japanese)</td>
<td>2005</td>
<td>56</td>
<td>57</td>
<td>Posterior fusion or laminectomy</td>
<td>14</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Borkhuu et al.</td>
<td>2009</td>
<td>355</td>
<td>14</td>
<td>Posterior or anteroposterior fusion</td>
<td>NA</td>
<td>NA</td>
<td>109</td>
</tr>
<tr>
<td>Present study</td>
<td>2014</td>
<td>262</td>
<td>53</td>
<td>Posterior fusion or laminectomy</td>
<td>92</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

NA: not available
題名：脊椎術後の高アミラーゼ血症・膵炎の検討

【背景】脊椎術後の高アミラーゼ血症は、腹部手術だけでなく腹臥位による脊椎手術でも起こりうる合併症とされている。また膵炎まで発症した場合には重篤な状態になりうる。これまでに脊椎術後の膵炎については、側彎症や前方固定など1例報告や、また小児 CP で側弯矯正固定をした際に、膵炎を30%に認めた報告などがあるが、まとまった報告は少ない。そこでわれわれは脊椎手術後の高アミラーゼ血症と膵炎について、自験例をふまえ調査した。

【方法】対象は、2010年1月から当施設で行われた脊椎手術のうち、血清アミラーゼ値を測定し得た262例（男性121例、女性141例）。平均年齢は53.9歳であった。

【結果】術翌日の血清アミラーゼ値が当院の正常値にあたる125IU/L以上の値を示したものは、92例（37%）であった。術後アミラーゼ値を正常群（125IU/L以下）と上昇群（125IU/L以上）の2群にわけて検討を行ったところ、年齢、性別、基礎疾患（糖尿病、高脂血症、高血圧）BMIでは2群間に有意な差はみられなかった。術中出血量・手術時間については上昇群では正常群に比べ有意に高かった（いずれもP<0.01）。採血データのうちGOT、GPT、LDH、CKについて検討を行ったところ、上昇群では正常群に比べGOTとCKが有意に高かった（いずれもP<0.01）。さらに正常値の5倍以上の高アミラーゼ血症（625IU/L以上）を示したものは、6例（3%）であった。そのうち5例は無症状であったが、1例は重症膵炎を発症し、内科的治療を要した。

【結論】脊椎術後のアミラーゼ高値の原因として、①腹臥位による腹部臓器の圧迫、②基礎疾患（糖尿病・慢性膵炎）の存在、③術中の麻酔、④手術侵襲が上げられる。今回の検討では、手術侵襲に当たる手術時間と術中出血量が術後高アミラーゼ血症となりうる因子であった。また術後GOT、CKなど骨格筋酶酵素の有意な上昇と高アミラーゼ血症に関連をみとめた。手術侵襲とくに出血による膵血流の低下がアミラーゼ上昇をおこした原因と考えた。出血量が多い場合、術後に腹痛・嘔吐など膵炎を疑わせる臨床症状に注意する必要がある。